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In this paper, we study the evolution of strongly three-dimensional disturbances 
which are generated by a point force in a parallel mixing layer. When the input force 
is a pulse, a wave packet develops whose wavefronts are approximately parallel to  
the spanwise direction. This is in sharp contrast to a wave packet in a wall boundary 
layer for which the wavefronts are strongly curved. On the other hand, when the 
input disturbance is oscillating harmonically in time, a spatially growing instability 
wave develops in a downstream wedge of (2, 2)-space. The size of this wedge, as a 
function of excitation frequency and velocity ratio, is determined. The receptivity of 
the shear layer to pulse-type and harmonic excitation is also studied. It is found that 
the shear layer is especially sensitive to relatively high-frequency forcing on its 
centreline. 

1. Introduction 
It is now generally recognized that large-scale or coherent structures play an 

important role in the dynamics of turbulent free shear flows. These structures have 
their origin in the instability modes of the ‘fictitious’ time-averaged mean flow. 
There is mounting experimental evidence which suggests that these larger scales of 
the flow can be organized by low-level periodic forcing - in this case the large-scale 
motions become quasi-deterministic and describable by the methods of linear and 
nonlinear stability analyses for slowly diverging base flows (Crighton & Gaster 1976 ; 
Gaster, Kit & Wygnanski 1985; Goldstein & Leib 1988). 

For this reason, there is a renewed interest in the stability analysis of various types 
of shear flows. Whereas in classical stability theory the principal objective is the 
determination of the temporal stability of the flow via modal analysis (Betchov & 
Criminale 1967 ; Drazin & Reid 1981), recent stability studies focus on spatial modes 
and spatio-temporal modes (Monkewitz & Nguyen 1987). The former describe the 
spatial evolution of infinitely long wavetrains while the latter characterize the 
corresponding behaviour of finite-length wavetrains (i.e. wave packets). The 
condition under which two-dimensional spatial instability modes actually evolve in 
a harmonically excited free shear layer has been discussed by Huerre & Monkewitz 
(1985). The precise requirement is that the flow be convectively unstable and, roughly 
speaking, this implies that the velocity of the reverse flow (if any) be quite small. 

It is well known that a wave packet, which is the response of a base flow to a 
spatially compact pulse-type input disturbance, is the link between temporal and 
spatial instability modes (Criminale & Kovasznay 1962; Gaster 1968). This link can 
be made extremely strong and precise by synthesizing a spatial mode from a series 
of wave packets (Balsa 1988) ; this is the approach that we shall follow in the present 
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paper in our discussion of highly three-dimensional spatial instability modes 
generated by point forces. However, wave packets are physically interesting entities 
in their own right since they appear to break down to turbulence a t  lower amplitudes 
than infinite wave trains (Gaster 1981). In  fact, it is reasonable to think of a 
turbulent spot as a highly aged wave packet. Gaster attributes this earlier 
breakdown in the wall boundary layer to the form of the Reynolds stress that will 
be dominated, in the case of the packet, by large amplitude modulations. Therefore, 
we begin our discussion with three-dimensional wave packets in shear layers and 
compare their characteristics with those in a wall boundary layer. 

This is done by solving the initial-value problem and by studying its long-time 
behaviour (93). The entire problem is formulated in 92. Our approach is partly 
classical in the sense that the streamwise and spanwise coordinates are extracted by 
Fourier transforms but the remaining partial differential equations (in the transverse 
coordinate, y, and time. t )  are solved directly (without the use of a Laplace transform 
in time). In this respect, as well as on some other essential points such as the presence 
of interfaces and the three-dimensionality of the flow, the present approach differs 
from the work of Case (1960, 1961). The main message is that a Laplace transform 
in time is not really needed, and we shall omit it for simplicity a t  the outset. As seen 
from ( lOa,  b ) ,  our solution consists of two Rayleigh modes (an unstablelstable pair) 
and a ‘convected mode’ (essentially the continuum mode of Case). The continuum 
mode arises because the vorticity, which is placed in the flow initially, must be 
convected (and possibly stretched) by the flow. From physical considcrations, it is 
clear that the basic instability of a shear layer has nothing to do with this ‘passive ’ 
convection of the initial vorticity, so that the continuum modes do not play an 
important role in the large-time asymptotic solution which is determined by the 
unstable discrete modes. 

The main significance of the solution to the inital-value problem is that it tells us 
the extent to which a discrete instability mode is excited by the given initial 
disturbance. In  other words, the solution of the initial-value problem determines the 
receptivity of the flow ; that is, it determines the amplitude of each mode. Although 
some theoretical work has been done on the receptivity of wall boundary layers 
(Goldstein 1983), no results exist for free shear flows. We believe that the results of 
this paper are quite representative of the behaviour of the flow field generated by 
compact disturbances in shear layers (e.g. small heating elements or tiny jets). 

In  $94 and 5 ,  we describe the highly three-dimensional instability wave (and the 
corresponding receptivity) which is produced by a harmonically oscillating point 
force. Perhaps the most interesting geometric feature of this problem is the presence 
of a ‘wedge of influence’ in (x, 2)-space. This wedge contains all the instability waves 
generated by the force and is reminiscent of the Mach wedge in supersonic flows. We 
also discuss the geometry of this wedge as a function of the similarity parameters of 
the problem. 

I n  summary, the contributions of this paper are : a comparison of wave packets in 
a wall boundary and free shear layers, the receptivity of a shear layer to spatially 
compact pulse-type and periodic excitation, and the elucidation of the downstream 
structure of the instability wave which is shed behind an oscillating point force. 

2. Formulation of the problem and its solution 
Consider a unidirectional parallel shear flow whose velocity components are [ U(y), 

0, 01, where x = (x, y, 2,) is a right-handed Cartesian coordinate system. Let this base 
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u= u i j  \ 
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linear profile 

FIGURE 1. Geometry of the problem. 

flow be perturbed by a volume force I; whose components are F, = F, = 0 and 
Fv = -s&(s)&(y-y,)S(z) S(t) ,  where S(6) is the delta function with support a t  6 = 0. 
The y-component of the total impulse exerted on the fluid is (-s). This spatially 
compact force is located a t  the point (0, yo, 0) ,  where yo denotes the transverse 
coordinate of the force (figure 1). The force acts on the fluid only for a brief instant 
of time ( t  = time). One of our objectives is to study the spatial and temporal 
characteristics of the disturbance generated by this force using linear theory. 

Under the assumption that the flow is incompressible with unit density, the 
governing equations are v * u  = 0, ( la )  

Du d U .  
--+v--I = -Vp+F, j ,  
Dt dy 

where the perturbation velocity is denoted by u = (u, v, w) ,  p is the perturbation 
pressure, and i, j are the unit vectors in the x- and y-directions, respectively. 
DIDt = a/at + UtI/ax is the convective derivative following the base flow. 

We may think of the solution (u, p )  as the fundamental solution or Green function. 
This, together with the principle of superposition, can be used to describe the 
response of the shear layer to any y-force. Although the techniques of the present 
paper may be applied to investigate the effects of the other two components of the 
force, we restrict our attention to a y-force only in the present analysis; from an 
experimental point of view, a shear layer is usually perturbed by a ‘transverse 
disturbance’ (such as an oscillating trailing edge flap or a vibrating ribbon). 

Our governing equations (1 a, b) are solved with specific initial conditions which 
state that prior to the impulsive triggering of the flow by the force, all perturbations 
are null 

u = p = O  for t<O.  

Furthermore, a t  large distances, (x2 + y2 + 2); -f CQ, all disturbances are required to 
vanish. We are interested in the complete solution to the initial-value problem, not 
merely the growth rate, phase velocity, or shape of a specified mode. This is because 
we wish to study the response of the flow to our specific excitation. In  other words, 



80 T .  F .  Balsa 

we wish to study how a 'transverse disturbance ' excites the instability modes of a 
shear layer and the relationship between these modes and the excitation which 
produces them. We call this relationship the receptivity of the shear layer. 

We shall solve (1 a, b )  by the use of Fourier transforms in the x- and z-directions. 
A Laplace transform in time is avoided altogether for the sake of simplicity. 
Introduce the Fourier transform pairs by 

where k and I are the wavenumbers in the streamwise and spanwise directions, 
respectively. After transforming (1 a, b )  and performing some straightforward algebra 
to eliminate all variables in favour of G ,  we arrive a t  

d2U ($ + ikU) ($ - K2$)  - ikv dy2 = - K~ pg, (4) 

where K, = (k2 + 1 2 ) .  

inverse of the convective operator (a/at+ikU). This results in 
We may readily convert (4) into an integro-differential equation by finding the 

where the primes denote differentiation with respect to y, U, = U(yo), H ( t )  is the 
Heaviside function, and we have written G(7) for B(k, y, I ,  7). Note that in obtaining 
( 5 )  we have enforced the inital condition 6 = 0 a t  t = 0- and set the strength of the 
impulse, E ,  to unity since our problem is linear in E .  Observe also that there is no loss 
in generality by choosing two of the coordinates of the point force to be x = 0 and 
z = 0 since the base flow is homogeneous in these directions. 

Since our primary interest is in the receptivity of shear layers and in the 
qualitative description of the evolution of three-dimensional disturbances, we will 
assume that the base velocity U = U(y) is given by the piecewise linear profile of 

where Urn = a( U, + U,) and AU = U, - U,. Both the temporal and spatial instability 
characteristics of this profile approximate very closely the large Reynolds number 
instabilities of a class of infinitely smooth profiles which differ from (6) only in two 
very narrow regions a t  the edges of the layer, say y = 1 (figure 1) .  A more detailed 
justification of these remarks is given elsewhere (Balsa 1987). The simplicity and 
usefulness of the Rayleigh profile is unquestionable, and it is sufficient to note here 
that for this profile, we can solve the initial-value problem in closed form, hence the 
structure of the solution and the evolution of the modes become completely 
transparent and are not hidden in excessive numerical calculations (Balsa 1988). 
Some of our procedures are applicable to general parallel flows, and the results 
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obtained herein apply qualitatively to these flows. It is also worth pointing out that 
the evolution of wavelike disturbances (linear and nonlinear) in unbounded shear 
flows, wibh spatially uniform shear rates, has been studied by Lagnado, Phan-Thien 
& Leal (1984), Bayly (1986), and Craik & Criminale (1986) in a very general 
setting . 

Our integro-differential equation ( 5 )  assumes an extremely simple form for the 
piecewise linear profile since u" z 0 (except a t  y = k 1, where we use interface 
matching conditions). We find, for t > 0, 

The principal task ahead of us  is to  solve (7a) with decaying boundary conditions a t  
Iyl+oo such that 4 and @ are continuous across the shear layer interfaces a t  
y = k 1.  We first concentrate on the case when the force is located within the shear 
layer; lyol < 1. 

For this case there are four regions of interest and, in each of these, the solution 
for 4 may be written as a linear combination of exp (k K Y ) ,  where K = (k2+Z2)i such 
that Re ( K )  2 0, where Re ( . )  denotes the real part of a complex number. Note that, 
in general, we must permit the streamwise and spanwise wavenumbers (k, I) to be 
complex and the inversion of the Fourier transform ( 3 b )  is taken along suitably 
chosen contours in the complex k- and 1-planes. 

By elementary considerations, we have 

I (Y 2 111 A e - K ( f / - l )  

A cosh [ ~ ( y -  l)] +Csinh [ ~ ( y -  l)] 

Bcosh [K(Y+ l ) ] + E s i n h [ ~ ( y +  l)]  
B e + K ( Y + l )  

A (yo < y < l ) ,  
( - 1  < y < yo), 

v =  j 
(y 6 -11, 

where (8) already satisfies the decaying boundary conditions a t  Iyl+oo and the 
continuity of 4 across the interfaces. Note that A ,  B, C and E are coefficients 
depending on time (but not on y). 

We shall use A = A ( t )  and B = B(t)  as our principal variables since C(t )  and E(t)  
can be readily expressed in terms of the former. This is accomplished by enforcing 
the usual matching conditions across the force location y = yo. The final result is 

s i n h 2 ~  = + A } ~ ~ ~ h 2 ~  -B + A  -B}  + X ( k , s i n h [ ~ ( y ~ f i ) ] .  K (9) 

The equations for A(t)  and B(t) come from the requirement that the Fourier 
transform of the pressure is continuous across the interfaces. This requirement can 
be readily satisfied by using the linearized x-component of the momentum equations. 
After some straightforward algebra we arrive a t  the coefficients in (8): 

A(t) = eAT{[A(O+)-a]  (h+ia,,)+ia,,[B(O+) --b]}/Zh 

+ePA7{-ial2 [B(O+)-b]+[A(O+)-a] (h-ial,)}/2h+aexp [-ik(U,-U,)t], 
(10a) 
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+ [B(O+) -b] ( A  - iall)} ,/2A 
(A-iall) (h+ia,,) 

ia,, 

+ [B(O+) - b] ( A  + iq1)  
( A  - iall) ( A  + iu,,) 

ia12 
+ e-hT { - [ A  (o+) - a]  

+ b exp [ -ik(Uo- Urn) t ] ,  (106) 

where, in (IOU, 6), the quantities a, A,  etc., are evaluated at K (i.e. a = u(K) ,  etc.) and 
7 = AUtk/K. Note that (?)  = (.  ) exp ( + ikU, t ) ,  Urn = a( U, + U,), and AU = U, - U,. 

Furthermore, in deriving the last set of equations, we have used the following 
definitions : 

A(O+) = K(O+)} 
B(O+) = B(O+) 2K 

where sgn (yo) = 1 according to yo > 0 or yo < 0. Otherwise, (10a, b )  hold for A"(t) 
and B(t). 

In  order to keep our results manageable, we shall focus on the transverse velocity 
component a t  the upper interface. Similar results may be obtained for other 
quantities of physical interest. From (8), ( 3 b ) ,  and the definition of A", we find 

v(z, 1, 2 ,  t )  = - A"(t)exp[ik(x:-U,t)+iZz]dk:dl. (16) 

Under the assumption that AU = V, - U, > 0, the most important contribution to 
(16), for large times, comes from the first term of A(t) - this term corresponds to the 
unstable mode of the shear layer. The precise mathematical arguments for the 
validity of the last remark were given by Balsa (1988) and will not be repeated here. 
Physically, however, it is plausible that the large-time solution should be dominated 
by the unstable mode. For these reasons, (16) may be rewritten as 

v(x, 1, z ,  t )  = - exp [ik(x:- U, t )  +iZz]eA('")'F1(~) dkdZ, ( 1 7 4  
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for d +- 00, where 

P1(~) = {[A(O+) -a] ( A  + iall) + ia,,[B(O') -b] } /2h .  ( 1 7 b )  

It is understood that the quantities A(O+), a ,  etc., appearing on the right-hand side 
of (17b), are evaluated at  the argument K as given by (12), (13), etc. Note that in 
(12a), we choose the principal square root such that 2; maps the complex 2-plane 
cut along the negative real axis onto the half space Re (2;) > 0. 

Note that our solution for (u, p )  consists of an unstable/stable pair of Rayleigh 
modes corresponding to the first two terms of (10) and a 'convected' (i.e. continuum) 
mode corresponding to the last term of (10). There are no Squire modes in the present 
problem (because the flow is inviscid), and had we used a Laplace transform in time, 
the appearance of the Rayleigh and the continuum modes would have been slightly 
less transparent. However, from (4) and ( 5 )  it is seen that the origin of the 
exponential time factors in ( 5 )  is due to the 'removal' of the convective operator, 
(a/at+ikU), from (4). This is entirely equivalent to the inclusion of the continuum 
modes (Case 1960). 

There remains to evaluate (17a) by the saddle point method in order to obtain a 
simple result for the velocity perturbations. This leads to the concept of a wave 
packet, which is described in the next section. 

3. The three-dimensional wave packet 
The fluid is perturbed by a point force located at  x = (0, yo, 0). This force acts on 

the shear layer for a brief instant of time, thereby disturbing the equilibrium state 
of the fluid represented by the parallel base flow. For large values of time, the many 
instability modes that were excited by the initial disturbance interfere with each 
other and produce a relatively simple structure, which is called a wave packet 
(Gaster 1968, 1975). 

The form of this wave packet may be calculated by evaluating (17 a )  as t + 00 by 
the saddle point method. Since Fl depends only on the oblique wavenumber 
K = (k2+l2) ; ,  it is convenient to introduce polar coordinates ( K ,  8) such that 

k = K cos 8, 

1 = K sin 0.  

As long as (k, I )  are real, we may think of 8 as the direction in (x, 2)-space along which 
the wavefront of a three-dimensional oblique instability mode is propagating. (x, z )  
is called the propagation space (Hayes 1970) 

In order to observe the detailed structure of the packet, we must move with the 
disturbance in some sense. Define moving observer velocity components G = x/t  and 
L = z / t  and represent these in terms of polar coordinates (Y", a) via 

(18a) 

(18b) 

G- U, = Y" cosa, (194  

L = Y"sina (19b) 

where, of course, Y" and a are always real. Actually, (G, L )  is the group velocity in 
propagation space, but we need not be concerned about this at this time. 

Based on these opening remarks, (17 a)  can be rewritten as 

w(x, 1, z ,  t )  = eTh Fl (~ )  KdKd8, 
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where T = AUt, P O b )  

(20c) 
Y 
AU 

h = h ( ~ ,  8; Y/AU, a )  = iK-cos(O-a)+h(K) cos8. and 

It is now possible to evaluate (20a) quite simply as t+oo for fixed values of the 
observer velocities G and L. The saddle points, K = K,(Y/AU, a )  and 8 = B,(Y/AU, 
a) ,  are given by the simultaneous solution of ah/& = ah/a8 = 0 (Dingle 1973, p. 209). 
The final result ia 

v(x, 1,z ,  t )  = exp ( ~ h , ~ )  cos ( ~ h , ,  + y ) ,  (21a) T 
where T = AUt. 

and 

h, = h,(V/AU, a)  = h ( ~ ~ ,  6,; V l A U ,  a), 

Note that y (real) is the phase of the complex number X ,  AU = U, - U, > 0, and the 
subscripts R and I denote the real and imaginary parts of a complex number. Double 
subscripted variables denote partial derivatives evaluated at the saddle point (e.g. 
h, = a2h/aK2 a t  K = K, and 8 = O0). 

The receptivity of the shear layer to pulse-type disturbances is contained entirely 
in the complex-valued function Fl(~) (see ( 1 7 b ) )  evaluated a t  the saddle point 
K = K,. We shall study the behaviour of this function in $5. The term ‘receptivity ’ is 
used in this paper with two different meanings to quantify the responsiveness of a 
shear layer to pulse-type and periodic excitations. We note that (21 a, c) contain all 
the usual terms associated with the saddle-point method (i.e. exponential growth due 
to the instability, oscillations due to the wave-like character of the perturbed flow, 
and a ‘decay’ term due to the geometric spreading of the ‘rays’ in propagation space 
as described by { T[h, h,, - h:,]i}-’). Each one of these terms is completely independent 
of the excitation ; the only term that contains any information about the excitation 
is 2Fl. Therefore, 2Fl is a (reasonable) measure of the receptivity of our shear layer to 
a pulse. The general structure of a wave packet (apart from the factor Fl) was 
discovered by Gaster (1968) and Gaster & Davey (1968), although an approximate 
structure was obtained by Criminale & Kovasznay (1962). 

We may think of equations (19) as a mapping from propagation space (2, z )  onto 
(Y/AU, a )  space (i.e. essentially group velocity space) via the transformation 

sin a. 
Z Y  

AUt - AU 

Quite often it is far more convenient to  describe certain aspects of the packet in 
(Y/AU, a)-space rather in propagation space. The last remark certainly holds true 
for the growth rate, hOR and Doppler-shifted frequency (as seen by the moving 
observer), hOI. 

The behaviour of these quantities, as functions of Y/AU, is shown in figure 2 for 
parametric values of a. It is seen that the growth of the packet is maximum a t  
Y/AU = 0 (i.e. x = Urn t ,  z = 0). We shall call this point the centre of the packet. As 
we move away from this point in the downstream direction (Y/AU > 0, a = 0 ) ,  the 
growth rate drops off monotonically until we reach the edge of the packet at 
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a = 0" 

a = 60" 
a = 90" 

0 0.2 0.4 
V I A U  V / A U  

FIGURE 2 .  Wave packe: growth rate (hOR) and Doppler-shifted frequency (h,J as a function of 
group velocity (Vf AU, a). 

V / A U  = 0.5 and a = 0. Very similar remarks hold true for the other directions (i.e. for 
other values of a) ,  although the edge of the packet depends somewhat on the precise 
value of a. Crudely speaking, we also see the central idea behind the Squire 
transformation in figure 2 :  oblique waves, with a =!= 0, generally grow less rapidly 
than two-dimensional waves for which a = 0. Indeed, the growth rate for a = 0 is 
precisely the two-dimensional one (Balsa 1988). Note, however, that  even ' cross- 
waves' (a = in)  grow quite strongly. This conclusion points out the danger of 
applying the Squire transformation to modes with complex wavenumbers. 

Clearly, there must be complete symmetry for hOR between the directions given by 
(a) and (-a), as well as by (a )  and (n-a) .  In  other words, there is left-to-right 
symmetry (facing downstream) as well as upstream and downstream symmetry, 
therefore, only results in the range 0 < a < in are shown. 

The Doppler-shifted frequency, hoI, is very nearly a linear function of V / A U .  This 
frequency is zero a t  the centre of the packet and increases monotonically as one 
moves in the downstream direction. I n  other words, one will see a wave-like pattern 
in the downstream direction as a result of a pulse-type excitation. On the other hand, 
in the spanwise direction (a = in) the frequency is identically zero for all values of 
V / A U .  Therefore, there is no wave-like structure in this latter direction. Once again 
we have left-to-right symmetry, but antisymmetry in the upstream and downstream 
directions in the sense that the frequency hoI at (n-a) is the negative of hOr a t  a. It 
is absolutely essential to remember that these remarks on symmetry apply only to  
the growth rate and frequency and not to the disturbance velocity v ( x ,  1, z ,  t ) .  We 
shall discuss the symmetry properties of v in $ 5 .  

When a shear layer is perturbed by a pulse, a t  each instant of time, the 
exponentially large part of the disturbance will be contained (very roughly speaking) 
in a circular disk in (x, 2)-space with the centre a t  x = U, t ,  z = 0 and radius 
x 0.5 AUt. Clearly, in space (x, z ,  t ) ,  the zone of influence of this pulse will be a 
cone. This we shall call the cone of inJEuence, whose geometry is shown in figure 3. 
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FIGURE 3. Cone of influence of a pulse-type point force in propagation space (Urn > 0). 

The slenderness of the cone, which measures the rate a t  which the wave packet is 
spreading out in space, is given by 0.5 AUIU, (approximately). 

4. Periodic excitation by a point force 
An oscillating point force in a shear layer will generate a complicated three- 

dimensional disturbance. Very little work has been done on three-dimensional 
disturbances, either theoretically or experimentally. I n  classical temporal stability 
theory, usually some form of the Squire transformation is invoked to assess the 
stability of the flow. On the other hand, very little is known about the spatial 
stability of three-dimensional disturbances in shear flows (Michalke 1969). 

Our principal aim in this section is to synthesize the response of a shear layer to 
a periodically oscillating point force from a series of wave packets. Our main tool is 
a Duhamel-type superposition integral of the form 

V(x, y, z, t )  = e+iw*t s:v(x, y, z ,  7) e-io*7 d7, 

where V(x, y, z ,  t )  is the transverse velocity component associated with the har- 
monic problem generated by a volume force of the form F = (0, Fy, O), where Fu = 
- E ~ ( z )  S(y-y,,) S(z) exp (iw, t ) .  Here, w, is the (real) radian frequency of oscillation 
and v(x, y, z ,  t )  is the solution to the pulse problem. As mentioned in the Q 1, we shall 
treat the harmonic problem without introducing a Laplace transform in time. We do 
this in order to avoid the evaluation of a tricky contour integral in complex frequency 
space. 

As shown by the author (Balsa 1988), it is possible to obtain V(x, y, z ,  t )  for large 
values of (x, z )  by using, not the complete pulse solution for v(x,  y, z, t ) ,  but only its 
asymptotic form - namely, the wave packet. After substituting (21 a )  into (23), we 
find 

(241 
ifo*t = r V I J C e x p  [T(h,-iw,/AU)]-+CC(w,), d T  

T AUV(z, 1, z, t)e- 
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where CC(w,) denotes the complex conjugate of all the terms on the right-hand side 
of an equation provided that we first replace W* by ( - w * ) .  The integral in (24) is 
taken over the wave packet which is contained in the cone of influence (figure 3). 

Note that the 'rapid phase' h (see (17a)) may be written as 

. G-Urn L 
h = 1~- cos 8 + iK - sin 8 + A ( K )  cos 8, 

AU AU 

so that h = h [ K ,  8; (G-Urn)/AU, LIAU], K, = Ko[(G-Um)/AU, LIAU], and t?, = 
8,[(G- Um)/AU, L/Au] .  In  equation (24), h, = h[Ko, 8,; Z I T -  Um/AU, Z I T I ,  where in 
the last equation K, and 8, are evaluated a t  (x/T-U,/AU) and (z/T).  Of course, 
h,, as expressed above, is exactly the same function as that given by (21 b) ,  although 
the third and fourth arguments have been changed. We shall always point out the 
functional form with which we are dealing. In  this section, the arguments of h are 
given by (25). 

As long as the instability is convective (see Huerre & Monkewitz 1985; Balsa 
1988), that is, the positive t-axis is not contained in the cone of influence, the principal 
contribution to the integrals in (24) comes from a saddle point in T-space. Note that 
(24) is evaluated by analytic continuation into complex T-space. It! is convenient to 
introduce a new variable of integration, 6, defined by 

X 
T =  E+ Um/AU' 

so that the exponents in (24) become 

where the upper and lower signs go with the first and second terms. In  the rest of this 
paper, we restrict our attention to  the evaluation of the first integral - similar results 
may be obtained for the second integral of (24). This is because frequencies u* and 
( - w * )  have the same effect on the shear layer. Note that in view of (26a). 

where 

and K, and 8, are evaluated a t  6 and 7. 
The saddle point in complex 6-space occurs a t  the point E- where 

iw* - cos [8,(6-, 7-11 W [ K O ( 5 - ,  7-)I = 0, (27) 

and 7- = r([-). w = W ( K )  = - k U m  +AUA(K) is the two-dimensional dispersion 
relation associated with the unstable Rayleigh mode. Actually, cos B,w(K,) is 
precisely the three-dimensional dispersion relation as obtained from the Squire 
transformation. After using the standard results for the saddle point method as 
x-t co (Dingle 1973, p. 135), we arrive at 

where 

+second term, (28a) X S I ( K 0 )  KO 

(h, cos2 + 2 ~ ,  h,, cos . sin + K i h , ,  sin2)$ 
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and all the quantities in the first term on the right-hand side of (28a)  are evaluated 
at the saddle point 5 = E-. For example, K, = K,,(E-, v-), 8, = O,(f[_, 7-), etc. Doublc 
subscripted variables denote partial differentiation (e.g. h,, = i3zh/&9z) and thc 
arguments of the trigonometric functions cos and sin in the curly brackets of (28a)  
are (8,-#). 

Equation (28a) is one of the principal results of this paper and will be fully 
discussed in the next section. At this point, however, we wish to make several 
preliminary observations. First, for a given base velocity distribution, the saddle 
point t- depends on only a single parameter, namely, z/x = tan q5.  Therefore, along 
different rays in (x, z)-space we will observe different complex wavenumbers ( K ,  8) or 
(k, I), but, we will find a fixed wavenumber along a given ray. This is an especially 
interesting result since an individual wave packet does not have this property. 
Because of this, ( 2 8 a )  looks very much like a spatial instability mode- the 
magnitude of the disturbance grows exponentially with distance r = (xz + 2); along 
each ray. The disturbance velocity also has an intrinsic directionality and cylindrical 
spreading contained in the factor (cos 4 / r ) i .  This is due to the fact t ha t  propagation 
space has two space dimensions. The receptivity of the shear layer to periodic 
disturbances is contained in the function PI[~,((-, 71-)], as explained in 53. 

5. Discussion of results and conclusions 
Before we discuss some of the intricacies of three-dimensional wave packets, it is 

desirable to take a quick look a t  one of them. In  figure 4(a) we show the transverse, 
velocity component at  the uppcr edge of the shear layer [i.e. w(x, 1,  z ,  t ) ]  for 
T = AUt = 40. The point force is located on the centre of the layer (yo = 0) and 
U, = 1,  U, = 0. The strength of the impulse is arbitrarily chosen as e = 2.5. 

In this figure, we see the kind of spatial structure which had been anticipated at  
the end of $3.  In  the streamwise direction, x, we observe several waves whose crests 
and troughs decay rather rapidly (within about one wavelength) on either side of the 
x-axis. The highest amplitude of the waves corresponds roughly to the centre of the 
packet. The entire pattern drifts downstream at the shear layer average velocity, 
Urn, while a t  the same time, more waves develop in the packet. This is because the 
physical (i.e. real part of the) wavenumber is nearly a constant along the x-axis (see 
figure 2 ; h,, is linear in x) while the overall size of the packet grows in proportion to  
time. 

It is quite remarkable to observe that the wavefronts are almost perfectly parallel 
to the spanwise direction, z .  This result is especially surprising in view of the well- 
known snapshots of wave packets in a wall boundary layer by Gaster (1975). One of 
Gaster’s pictures is also shown in figure 4 for comparison. A striking feature of wave 
packets in boundary layers is the highly curved wavefronts. Roughly speaking, 
disturbances in shear layers are more ‘two dimensional ’ than in boundary layers. 

In a shear layer, wavefronts are straight because the base flow is antisymmetric 
about the mean velocity Urn. The last remark is certainly true for our piecewise linear 
profile, as well as for the so-called tanh family of profiles (U = Urn + A U / 2  tanh y). The 
reason is that the Doppler-shifted frequency hOI is antisymmetric with respect to the 
z-axis so that hOI = 0 in the spanwise direction for x = Urn t .  Therefore, no oscillations 
are possible in the z-direction since the spanwise wavenumber is ah,,/az = 0. Clearly, 
such antisymmetry does not hold in a wall boundary layer so that, in general, there 
will be significant oscillations in the spanwise direction. These oscillations result in 
a curved wavefront. 
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FIGURE 4. Qualitative comparison of wave packets in (a )  free shear layer and ( b )  boundary layer 
(Gaster, 1975). 

It is also enlightening to discuss briefly the location of the saddle points (K,, 8,) in 
( K ,  @)-space. At the centre of the packet, K,, = k,,, and 8, = 0, where k,,, is the real 
wavenumber associated with the maximum growth rate of two-dimensional temporal 
stability (for the piecewise linear and tanh profiles with U, = 1, U, = 0, k,, is 0.3984 
and 0.4446, respectively). Indeed, the centre of the packet grows at  the maximum 
growth rate of temporal stability. As we move away from the centre in the 
downstream direction (a  = 0 ) ,  K" moves into the upper half of the complex plane, 
more or less along a line parallel to the imaginary axis and passing through 
K = kmax. The value of 8, remains unchanged (i.e. 8, = 0). It is for this reason that 
a three-dimensional wave packet has exactly the same growth rate and frequency 
in the downstream direction as a two-dimensional one - the spanwise wavenumber 
1 = K, sin 0, = 0. 

On the other hand, as we move away from the centre of the packet in the spanwise 
direction (a = $n), K, moves from k,,, to the origin along the real axis and 8, is pure 
imaginary (though not a constant). In  other words, in the spanwise direction the 
wave packet is comprised of instability modes whose streamwise and spanwise 
wavenumbers are k = K ,  cos 0, = K, cosh 8: and 1 = K ,  sin 0, = iKo sinh 0: and 8: is 
real. The spanwise wavenumber is purely imaginary ! For other directions (i.e. for 
other values of a), K, and 8, assume values that lie between the above two limiting 
cases. 

We next turn to a brief discussion of wave packet similitude. The point of 
stationary phase ( K ~ ,  8,) depends only on the non-dimensional variables ( V / A U ,  a), 
which specify a (non-dimensional) point in the packet via (22). At such points, wave 
packets in different external streams will be identical, provided that the stretched 
variable T = AUt is used to measure time (see ( 2 1 ~ ) ) .  This powerful similarity rule 
enables us to study wave packets in the canonical flow U, = 1,  U,  = 0 and, from these 
results, deduce the form of the packet in any other external stream. In  this respect 
wave packets, which of course develop both in space and time, differ dramatically 
from spatial instability modes, for which the above similarity rule does not hold. 
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..I 

FIGURE 5. Contour map of wave packet (a) in figure 4 (U ,  = 1, U, = 0, yo = 0, T = AUt = 40, 
E = 2.5). 

Putting these remarks another way, the non-dimensional (inviscid) dynamics of a 
wave packet cannot be changed by altering the velocity ratio (V,/U,) across the shear 
layer. 

We next come to the symmetry properties of the wave packet. The growth rate, 
hOR, and Doppler-shifted frequency, h,,,, have certain symmetries that are not shared 
by the disturbance velocity ~ ( x ,  y, z,  t ) .  There is, trivially, left-to-right symmetry 
(facing downstream), but the upstream and downstream symmetries are lost. This is 
because of the presence of 2 in (21a) which also depends on x and z.  The contour 
plot of our wave packet of figure 4(a)  is shown in figure 5. The centre of the packet 
(x = U,t, z = 0) is denoted by C. It is clear that  the packet is not symmetric about 
the z-axis ; very loosely speaking, there are generally ‘ more waves downstream than 
are upstream of the centre.’ Observe that the planform of the packet is some- 
what elliptical, with the major axis pointing in the direction of the base flow. (Note 
that the wiggles on the contours are caused by the plotting software.) 

In figure 6, we show the evolution of the wave packet of figure 4(a)  as a function 
of time. As time increases, more waves develop in the packet, and the peak amplitude 
of the wave increases in accordance with linear stability theory. 

In figure 7 ,  we show the behaviour of v(x, 1 ,  z, t )  as a function of source location. 
As the force is moved from the centreline, yo = 0, the amplitude of the packet 
decreases. Hence, a shear layer is most sensitive or receptive to disturbances that are 
near its centre (i.e. the point about which the mean velocity profile is antisymmetric). 
Previously, such sensitivity has been explained in terms of ‘critical layers’, but the 
present analysis shows that such an explanation cannot be entirely correct since our 
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FIGURE 6. Evolution of a wave packet in: (a )  time T = AUt = 30; ( 6 )  time T = AUt = 40; ( c )  time 
T = AUt = 50; and (d) time T = AUt = 60 (U, = 1, 9 = 0, yo = 0,  E = 2.5). 

base velocity profile has no critical layer. A force near the upper interface of the shear 
layer (figure 7c)  produces a larger velocity fluctuation a t  y = 1 than a force located 
near the lower edge of the layer. These remarks are easy to accept on simple physical 
grounds. 

We next discuss the results for the excitation of a shear layer, with external streams 
U, = 1.5, U, = 0.5, by a periodically oscillating point force of radian frequency w*.  
Since (28a)  is the first term of an asymptotic expansion for large values of r ,  this 
result is valid as long as the spatial growth rate CT > 0, where 

cr = Re [iKo cos (8,-#)], (29) 

K, = K,([ - ,  7-), and 8, = 8,([-, v-). Otherwise, our leading term is exponentially 
small, therefore, it cannot be the correct first term of our asymptotic series. 

In figure 8, we show the half-wedge angle #,,, as a function of excitation 
frequency w* .  As long as -#,,, < g5 < #,,, (recall x = rcosg5, x = rsin#), the 
spatial growth rate, (T, is positive and, in this wedge of (x, 2)-space, we have a three- 
dimensional spatial instability wave. Outside this wedge, disturbances are expo- 
nentially small in a relative sense. At low frequencies, the half-wedge angle is about 
26.6", and it decreases with increasing frequency, w*.  Roughly speaking, high- 
frequency disturbances are beamed along the downstream direction. Near-neutral 
waves can grow exponentially only in a slender wedge in the vicinity of the x-axis. 
It is interesting to speculate how a three-dimensional instability wave of this type 
would be focused down to the x-axis in a slowly diverging base flow. 

We next develop an asymptotic theory for the half-wedge angle #,,, at low 
frequencies. This is simple to do if we think of a spatial mode as a superposition of 
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FIGURE 9. Semi-wedge angle of an instability wave as a function of velocity ratio (w, /AU 0.3) : 
-, numerical results ; 0 ,  low-frequency theory. 
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FIG~JRE 10. Grawth rate and wavenumber of an instability wave as a function of polar angle 
(U,/AU = 1). 

wave packets. A wave packet, emitted a t  t = 0, has its centre a t  x = Umt a t  time t ,  
and its ‘radius’ is approximately 0.5 AUt. Therefore, there is ‘no’ disturbance 
outside the wedge with semi-vertex angle tan-’ (0.5 AUlU,). Wave packets that are 
emitted by the oscillating source a t  later instants of time simply fill the interior of 
this wedge. Apparently, this result overestimates the actual wedge angle a t  high 
frequencies (figure 8). This is due to the fact that there is cancellation at  high 
frequencies near the boundary of the wedge since the growth rates are small and the 
waves can destructively interfere. 

The similitude of our spatial instability mode can be expressed in terms of 
similarity parameters (w*/AU) and ( Urn/AU). In  figure 9, we show the dependence of 
the wedge angle, on (UJAU) a t  a fixed value of w,/AU = 0.3 (low frequency). 
The solid line represents the exact results obtained numerically, and the dots 
represent our low-frequency theory. There is excellent agreement between the two 
sets of results. Note that our three-dimensional instability wave can be made as 
slender as we please by increasing the mean velocity, Urn, with respect to the velocity 
difference, AU, This is analogous to increasing the flow velocity with respect to the 
speed of sound in supersonic flows. 

In  figure 10, we show the spatial growth rate, (T, and the wavenumber, K ,  
where 

K = fm[iK, cos (@,-$)I, (30) 
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FIGURE 1 1 .  Receptivity as a function of excitation frequency and source location ( U , / A U  = 1 ,  
e = l , r = l , $ = O ) .  

as a function of polar angle 4. The wavenumber is roughly proportional to the 
excitation frequency, and its variation with 4 is very small. Therefore, the 
wavefronts of our three-dimensional instability waves are slightly curved. On the 
other hand, the growth rates depend strongly on the polar angle 4. As in the case of 
the wave packet, the maximum growth rate occurs along the downstream direction. 
The point where u = 0 defines the edge of the instability wave at each frequency. 
This has already been discussed in terms of our wedge angle 

The receptivity of the shear layer to three-dimensional periodic disturbances may 
be measured by 

evaluated a t  the saddle point [-. Equation (31) essentially comes from the solution 
for the transverse velocity component (see ( S S a ) ) ,  and we may think of R as the 
‘amplitude ’ of our three-dimensional spatial instability mode whose value is 
determined by the location of the force (yo), its frequency ( w * ) ,  and the external 
stream velocities (U, and U2). 

We show the dependence of R on excitation frequency w ,  and force location yo in 
figure 11. We see that the receptivity of the shear layer increases monotonically by 
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FIGURE 12. Receptivity as a function of frequency and external stream velocities; horizontal axis 
o , / A U  applies to  curves A and B and w * / U ,  applies to curves A and rescaled B (yo = 0, 8 = 1, 
r =  1,  $ = O ) .  

about one order of magnitude (for yo = 0) as the frequency is increased over the range 
of interest. As the force is moved from the centreline toward the upper edge of the 
shear layer, the receptivity decreases, especially a t  higher frequencies. At low 
frequencies, of course, one expects negligible change. It is quite remarkable that a 
shear layer has such strong intrinsic receptivity to disturbances of various 
frequencies. I n  order to elicit the strongest response, the disturbance should be 
placed on the shear layer centreline. These remarks are completely consistent with 
our observations on the wave packet and two-dimensional waves (Balsa 1988). As the 
excitation frequency is further increased and approaches the neutral frequency, the 
receptivity becomes very large. We believe this is an unphysical result which has its 
origin in the branch cut singularity of the dispersion relation (Balsa 1987). 

Finally, we compare the receptivities of two shear layers with different external 
streams when the force is on the shear layer centreline (figure 12). The large difference 
between the two solid curves A and B can be considerably reduced by treating 
(w*/U,) (rather than o * / A U )  as one of our similarity variables. This rescaling of curve 
B results in the dashed curve. We conclude that the receptivity of the shear layer 
depends quite strongly on (w*/U,) but rather weakly on (UJAU). 
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